王中风

一、个人简介
王中风教授是国家高层次人才、IEEE (国际电工与电子工程师协会)Fellow 和 AAIA (亚太人工智能学会) Fellow。早年在清华大学自动化系获得学士和硕士学位,2000年从University of Minnesota电子与计算机工程系获得博士学位。先后任职于National Semiconductor、Oregon State University电子与计算机学院、Broadcom公司以及南京大学,曾经担任Broadcom公司技术副总监,是Broadcom公司FEC(前向纠错编码)领域的几个主要专家之一。同时担任过University of Colorado、中国科学技术大学和上海交通大学的兼职教授。先后参与十余款商用芯片的设计,累计产值超百亿元。拥有百余项发明和专利,共发表400余篇国际期刊和会议论文,八次荣获IEEE集成电路相关领域主流会议和会刊的年度最佳论文奖,包括2007年和2025年两次荣获IEEE VLSI Systems会刊年度最佳论文奖。在现有统计记录中,是全球首位在IEEE VLSI Systems会刊上有五篇及以上论文位列年度下载排行榜的作者。多次担任IEEE不同会刊的编委和客座编辑,数十次担任各种国际会议的技术委员和各类主席。此外,深度参与了多项工业国际标准的制订工作,至今有关技术方案已经被20种以上的国际网络通信标准所采纳。
二、研究领域
1.现代纠错码设计与实现、高速有线和无线通信系统
目前研究方向包括:现代纠错码的高性能、低功耗译码架构设计,面向高速网络通信的物理层关键技术研究,AI辅助的通信算法,以及大规模MIMO系统等。
2.人工智能算法与硬件架构协同优化
目前研究方向包括:CNN、Transformer和AI大模型等多种深度神经网络模型压缩及其算法-硬件联合优化,基于RISC-V、FPGA和ASIC的高能效AI加速器设计,以及基于存算一体技术的高效硬件智能计算架构等。
3.后量子加密(PQC)与计算机体系架构安全
目前的研究方向包括:针对格、编码、散列、超奇异同源等成熟PQC方案的研究,低功耗、高性能、高灵活度的PQC硬件架构设计,以及应对缓存侧信道攻击、保障数据流完整性的高性能可配置的安全处理器架构设计。
三、教育背景
1996.08-2000.08,University of Minnesota,电子与计算机工程,博士学位
1988.02-1990.07,清华大学,模式识别与智能控制,硕士学位
1983.09-1988.01,清华大学,模式识别与智能控制,学士学位
四、工作经历
2023.08- 至今,中山大学,集成电路学院,院长,教授、博导
2016.04-2023.08,南京大学,电子科学与工程学院,特聘教授, 博导
2007.06-2016.03,Broadcom公司,技术副总监
2003.09-2007.06,Oregon State University,电子与计算机工程学院,助理教授
2002.09-2003.09,National Semiconductor,资深工程师
2000.09-2002.07,MorphICs 技术有限公司,技术组成员
五、部分代表性成果
1、学术论文:
1) S. Song, L. Liu, Z. Wang and J. Xu, “Dual-Bit-Wise Stochastic Decoding for Polar Codes,” in IEEE Transactions on Signal Processing (T-SP), vol. 71, pp. 512-524, 2023.
2)D. Zhu, R. Zhang, L. Ou, J. Tian, and Z. Wang, “Low-Latency Design and Implementation of the Squaring in Class Groups for Verifiable Delay Function Using Redundant Representation,” in IACR Transactions on Cryptographic Hardware and Embedded Systems (CHES’2023), 2023(1), 438–462.
3)L. Feng, J. Sha and Z. Wang, “1+1<2: Efficient Automatic Standard Cell Sharing between Digital VLSI Designs for Area Saving,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (T-CAD), 2023. (Early Access)
4)W. Mao, S. Yang, H. Shi, J. Liu and Z. Wang, “Intelligent Typography: Artistic Text Style Transfer for Complex Texture and Structure,” in IEEE Transactions on Multimedia (T-MM), 2022. (Early Access)
5)J. Lu, C. Ni and Z. Wang, “ETA: An Efficient Training Accelerator for DNNs Based on Hardware-Algorithm Co-Optimization,” in IEEE Transactions on Neural Networks and Learning Systems (T-NNLS), 2022. (Early Access)
6)M. Wang, L. He, J. Lin and Z. Wang, “Rethinking Adaptive Computing: Building a Unified Model Complexity-Reduction Framework with Adversarial Robustness,” in IEEE Transactions on Neural Networks and Learning Systems (T-NNLS), vol. 33, no. 4, pp. 1803-1810, April 2022.
7) S. Zhang, W. Mao, and Z. Wang, “An Efficient Accelerator of Deformable 3D Convolutional Network for Video Super-Resolution,” 2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2022 (Best Paper Award)
8)J. Tian, P. Wang, Z. Liu, J. Lin, Z. Wang and J. Großschädl, “Efficient Software Implementation of the SIKE Protocol Using a New Data Representation,” in IEEE Transactions on Computers (T-C), vol. 71, no. 3, pp. 670-683, 1 March 2022.
9)H. Cui, F. Ghaffari, K. Le, D. Declercq, J. Lin and Z. Wang, “Design of High-Performance and Area-Efficient Decoder for 5G LDPC Codes,” in IEEE Transactions on Circuits and Systems I: Regular Papers (T-CASI), vol. 68, no. 2, pp. 879-891, Feb. 2021.
10) C. Ni, J. Lu, J. Lin, and Z. Wang, “LBFP: Logarithmic Block Floating Point Arithmetic for Deep Neural Networks,” 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 201-204, Dec., 2020 (Best Paper Award)
11) J. Wang, J. Lin, and Z. Wang, Efficient Hardware Architectures for Deep Convolutional Neural Network, IEEE Transactions on Circuits and Systems I: Regular Papers (T-CASI), vol. 65, no. 6, pp. 1941-1953, Jun., 2018 (Top 10 popular documents for over one year)
12)Z. Wang, Z, Cui, and J. Sha, “VLSI Design for LDPC Codes Decoding,” in IEEE Circuits and Systems Magazine, First quarter, 2011.
13) Z. Wang and Z. Cui, “Low Complexity, High Speed Decoder Design for Quasi-Cyclic Low Density Parity Check Codes,” in IEEE Trans. on VLSI Systems (T-VLSI), vol. 15, no. 1, Jan. 2007 (Top 4 most downloaded papers in IEEE Trans. on VLSI Systems in 2007)
14) Z. Wang and J. Ma, “Fast Interpolation Architecture for Soft-Decision Decoding of Reed-Solomon Codes,” in IEEE Trans. on VLSI Systems (T-VLSI), vol. 14, no. 9, pp. 937-950, Sep. 2006 (IEEE VLSI Transactions Best Paper Award in 2007)
15) Z. Wang and K. Parhi, “High Performance, High Throughput Turbo/SOVA Decoder Design,” IEEE Trans. on Communications (T-COMM), vol. 51, no 4, April 2003, pp. 570-79.
2、发明专利:
1)Area-efficient parallel turbo decoding,专利 7200799
2)Method and system for encoding 100G-KR networking,专利 9037940
3)Methods and apparatus for umbrella coding,专利 8972829
4)Encoding methods and systems for binary product codes,专利8499219
5)Forward error correction (FEC) scheme for communications,专利8341509
6)Transcoding scheme techniques,专利 9240907
7)Methods and systems for 2-dimensional forward error correction coding,专利 9148252
8)一种极化码解码器中f、g运算单元的硬件架构 中国发明专利 ZL201710151782.2
9)传输数据的方法、装置、发送设备和接收设备 中国发明专利 ZL201710553166.X
10)编解码方法、编解码装置及编解码设备 中国发明专利 ZL201880026154.4
3、获奖与荣誉:
1) 2022年,IEEE Computer Society Annual Symposium on VLSI
(ISVLSI’2022),最佳论文奖
2) 2022年,AAIA Fellow
3) 2020年,IEEE International System-on-Chip Conference(SOCC’2020),最佳论文奖
4) 2020年,IEEE Asia Pacific Conference on Circuits and Systems(APCCAS’2020),最佳论文奖
5) 2020年,南京大学, 魅力导师奖,最喜爱的研究生生涯导师奖
6) 2019年,南京市“科技顶尖专家集聚计划” A类人才
7) IEEE Computer Society Annual Symposium on VLSI(ISVLSI’2019),最佳论文奖
8) 2019年,IEEE Workshop on Signal Processing Systems(SiPS’2019),最佳论文奖
9) 2015年,IEEE Fellow
10) 2007年,IEEE 电路与系统学会 VLSI Transactions 年度最佳论文奖