廖思宇

一、   个人简介

    廖思宇,博士,硕士生导师,获罗格斯大学博士学术成就奖,主要研究高性能神经网络模型及相关的应用,研究成果已经发表在许多一流国际会议和期刊,如MICRO、ISCA、ICML、AAAI和CIKM等。拥有丰富的工业界经验,获国际商业机器实习优秀奖,易趣编程马拉松周一等奖,高通创新奖学金决赛入围,拥有美国专利1项。担任IEEE ASAP 2021 TPC成员,为TACO、TCAS-I、TCAS-II、TSP、NeurIPS、ACL、ICCV、AAAI等期刊和会议的审稿人。

     欢迎计算机、电子等相关专业的本科生、研究生加入本团队。

 

二、   研究领域

     随着大数据与并行计算的发展,现代人工智能已经影响到很多领域的发展,同时对底层的软硬件也提出了更高的要求。主要研究方向包括但不限于:高性能的深度学习模型训练与推理算法,如结构化/量化/分解/蒸馏/早停等;特定算法的并行计算设计实现,CUDA/SSE等;生成式人工智能在通讯、医疗、艺术等方面的应用,如扩散模型编解码,电子地图生成等;嵌入式深度学习模型部署。

 

三、   教育背景

2010.9-2014.6,合肥工业大学,信息安全,本科

2014.9-2018.6,纽约市立大学研究生中心,计算机,硕士

2018.9-2020.10,罗格斯大学,计算机,博士

 

四、   工作经历

2017.9-2017.12,纽约大学访学

2019.9-2019.12,普林斯顿大学访学

2020.11-2024.5,亚马逊,应用科学家

2024.06-至今 中山大学,集成电路学院,预聘助理教授(副教授职务)。

 

五、   部分代表性成果

[NeurIPS 2025] X. Feng and S. Liao, "CDFlow: Building Invertible Layers with Circulant and Diagonal Matrices", in Advances in Neural Information Processing Systems (NeurIPS), 2025

[NeurIPS 2025] X. Ding, B. Liu, S. Liao* and Z. Wang*, "Memory-Efficient Training with In-Place FFT Implementation", in Advances in Neural Information Processing Systems (NeurIPS), 2025

[IJCAI 2025] X. Ding, M. Wang, S. Liao* and Z. Wang*, "Block Circulant Adapter for Large Language Models", in Proceedings of the 34th International Joint Conference on Artificial Intelligence (IJCAI), 2025

[IJCAI 2025] X. Ding, L. Chen, S. Liao* and Z. Wang*, "Parameter-Efficient Fine-Tuning with Circulant and Diagonal Vectors", in Proceedings of the 34th International Joint Conference on Artificial Intelligence (IJCAI), 2025

[CIKM 2023] S. Liao, R. Zhang, B. Poblete and V. Murdock, "Bias Invariant Approaches for Improving Word Embedding Fairness", in Proceedings of the 32nd ACM International Conference on Information & Knowledge Management (CIKM), 2023

[AAAI 2021] S. Liao, C. Deng, M. Yin and B. Yuan, "Doubly Residual Neural Decoder: Towards Low-Complexity High-Performance Channel Decoding", in Association for the Advancement of Artificial Intelligence (AAAI), 2021

[AAAI 2020] S. Liao, J. Chen, Y. Wang, Q. Qiu and B. Yuan, "Embedding Compression with Isotropic Iterative Quantization", in Association for the Advancement of Artificial Intelligence (AAAI), 2020

[AAAI 2019] S. Liao and B. Yuan, "CircConv: A Structured Convolution with Low Complexity", in Association for the Advancement of Artificial Intelligence (AAAI), 2019

[MICRO 2018] C. Deng#, S. Liao#, Y. Xie, K. Parhi, X. Qian and B. Yuan, "PERMDNN: Efficient Compressed DNN Architecture with Permuted Diagonal Matrices", in IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018

[ICML 2017] L. Zhao#, S. Liao#, Y. Wang, Z. Li, J. Tang and B. Yuan, "Theoretical Properties for Neural Networks with Weight Matrices of Low Displacement Rank", in Proceedings of International Conference on Machine Learning (ICML),2017